出版著作
- 期刊论文
- 会议论文
- 专著
- 项目
- 学术报告
- Yue J, Long Y, Wang S, et al. Optimization of Shared Electric Scooter Deployment Stations Based on Distance Tolerance[J]. ISPRS International Journal of Geo-Information, 2024, 13(5): 147.
- Zhong Y, Wang S, Liang H, et al. ReCovNet: Reinforcement learning with covering information for solving maximal coverage billboards location problem[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 128: 103710.
- Wang S, Li X, Lin L, et al. A Single Data Extraction Algorithm for Oblique Photographic Data Based on the U-Net[J]. Remote Sensing, 2024, 16(6): 979.
- Wang S, Qi H, Li T, et al. Can normalized difference vegetation index and climate data be used to estimate soil carbon, nitrogen, phosphorus and their ratios in Xizang's grasslands?[J]. Frontiers in Earth Science, 2024, 11: 1340020.
- Liang H, Wang S*, Li H, et al. Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis[J]. International Journal of Digital Earth, 2024, 17(1): 2299211.
- Chen X, Wang S*, Li H, et al. An attention model with multiple decoders for solving p-Center problems[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 125: 103526.
- Yu Q, Wei W, Pan Z, J He, S Wang*, D Hong. GPF-Net: Graph-Polarized Fusion Network for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023.
- Nie S, Cai G, He J, S Wang*, et al. Economic costs and environmental benefits of deploying CCUS supply chains at scale: Insights from the source–sink matching LCA–MILP approach[J]. Fuel, 2023, 344: 128047.
- Wang S, Fu G. Modelling soil moisture using climate data and normalized difference vegetation index based on nine algorithms in alpine grasslands[J]. Frontiers in Environmental Science, 2023, 11: 1130448.
- Wang S, Liang H, Zhong Y, et al. DeepMCLP: Solving the MCLP with deep reinforcement learning for urban facility location analytics[J]. 2023.
- Ren, J., Yang, J*., Zhang, Y., Xiao, X., Xia, J. C., Li, X., & Wang, S*. (2022). Exploring thermal comfort of urban buildings based on local climate zones. Journal of Cleaner Production, 340, 130744.
- Liang, H., Wang, S*., Li, H., Ye, H., & Zhong, Y. (2022). A Trade-Off Algorithm for Solving p-Center Problems with a Graph Convolutional Network. ISPRS International Journal of Geo-Information, 11(5), 270.
- Song, S., Wang, S*., Ye, H., & Guan, Y. (2022). Exploratory analysis on the spatial distribution and influencing factors of Beitang landscape in the Shangzhuang Basin. Land, 11(3), 418.
- Chen, X., Wang, S*., Li, H., Lyu, F., Liang, H., Zhang, X., & Zhong, Y. (2022). Ndist2vec: Node with Landmark and New Distance to Vector Method for Predicting Shortest Path Distance along Road Networks. ISPRS International Journal of Geo-Information, 11(10), 514.
- Huang, K., Wang, C., Wang, S*., Liu, R., Chen, G., & Li, X. (2021). An efficient, platform-independent map rendering framework for mobile augmented reality. ISPRS International Journal of Geo-Information, 10(9), 593.
- Sun, Y., Wang, S*., Zhang, X., Chan, T. O., & Wu, W*. (2021). Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data. Energy, 226, 120351.
- Feng, X., Wang, S*., Murray, A. T., Cao, Y., & Gao, S. (2021). Multi-objective trajectory optimization in planning for sequential activities across space and through time. Environment and Planning B: Urban Analytics and City Science, 48(4), 945-963.
- Sun, Y., Wang, S*., & Wang, Y. (2020). Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Sustainable Cities and Society, 57, 102125.
- Li, W*., Wang, S*., Zhang, X., Jia, Q., & Tian, Y. (2020). Understanding intra-urban human mobility through an exploratory spatiotemporal analysis of bike-sharing trajectories. International Journal of Geographical Information Science, 34(12), 2451-2474.
- Church, R. L., & Wang, S. (2020). Solving the p-median problem on regular and lattice networks. Computers & Operations Research, 123, 105057.
- Zhou, L., Wang, S*., & Xu, Z. (2020). A multi-factor spatial optimization approach for emergency medical facilities in Beijing. ISPRS International Journal of Geo-Information, 9(6), 361.
- Wang, S*., Zhong, Y., & Wang, E. (2019). An integrated GIS platform architecture for spatiotemporal big data. Future Generation Computer Systems, 94, 160-172.
- Wang, S., Gao, S*., Feng, X., Murray, A. T., & Zeng, Y. (2018). A context-based geoprocessing framework for optimizing meetup location of multiple moving objects along road networks. International Journal of Geographical Information Science, 32(7), 1368-1390.
- Wang S, Zhang Z, Su C, et al. Spatial Optimization Site Selection of Beijing Cainiao Station Based on Multi-Source Geospatial Data[C]//Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geocomputational Analysis of Socio-Economic Data. 2023: 20-23.
- Wang S, Su C, Zhou J, et al. Analysis of the Distribution Characteristics and Influencing Factors of Advertising Billboards in Wuhan[C]//Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. 2023: 6-14.
- Wang S, Wang R, Su C, et al. Optimization of shared bicycle location in Wuhan city based on multi-source geospatial big data[C]//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Spatial Big Data and AI for Industrial Applications. 2023: 43-46.
- Wang S, Zhou J, Liang H, et al. A New Approach for Solving Location Routing Problems with Deep Reinforcement Learning of Emergency Medical Facility[C]//Proceedings of the 8th ACM SIGSPATIAL International Workshop on Security Response using GIS. 2023: 50-53.
- Shaohua Wang*, Haojian Liang, Yang Zhong, Xueyan Zhang, Cheng Su. DeepMCLP:Solving the MCLP with Deep Reinforcement Learning for Urban Facility Location Analytics. The Fourth Spatial Data Science Symposium (SDSS 2023).http://sdss2023.spatial-data-science.net/.
- Haojian Liang, Shaohua Wang*. A New Approach Based on Graph Neural Network for Solving p-center Problems. The 1st International Workshop on Methods, Models, and Resources for Geospatial Knowledge Graphs and GeoAI, GIScience 2021, Poznań, Poland. https://ling-cai.github.io/GIScience-GeoKG/
[1] 王少华著. 地理空间优化理论、方法和应用(Foundations、Methodologies and Applications of Geospatial Optimization)
- 中国科学院引才计划
- 中国科学院引才择优工程
- 北京市朝阳区协同创新项目(共同负责人), 2022.07-2023.06 “地理空间智能模型与GIS平台高效嵌入关键技术研发与应用”(E2DZ050100)课题经费175万元
- 创新团队项目(共同负责人),2023.07-2023.12,“遥感大数据创新团队”,课题经费100万元
- 可持续发展大数据国际研究中心(共同负责人),2022.03-2023.12,“地球大数据支撑城市可持续发展目标研究 ”,课题经费30万元
- 海南省自然科学基金面上项目(负责人), 2023.01-2024.12 耦合遥感大数据和空间智能的槟榔黄化病预测预报方法研究(323MS110), 课题经费7万元
- 北京市传感器重点实验室开放课题(负责人),2022.07-2023.06 “面向复杂情景的声传感器的特征分析及配置优化”(E2U1050600),课题经费3万元
- 国家测绘局测绘公益项目(负责人) 2015.01-2016.12 “地理空间数据内容模型与存储格式标准化研究”课题-GIS数据格式检查软件 (No.201512015)课题经费28.2万元
- 北京市优秀人才资助项目(负责人) 2015.01-2016.12 “面向大数据的商业地理信息系统关键技术研究” (No.201500002685XG242) 课题经费30万元
- 全国博士后管委会资助项目(负责人) 2015.01-2016.12 “空间优化优化研究” (No.20150081)课题经费30万元
- 中国营养学术开放课题(负责人) 2016.01-2016.12 “中国儿童营养地图” (No.20160095)课题经费5万元
- 北京市科委科技创新战略研究及专家咨询专项研究课题 2015.03-2015.12 “京津冀空间信息产业一体化发展专题调研”(Z151100003115007),研究报告分析与撰写(第二参与人),经费5万元
- 北京市科委新技术培育项目 2015.01-2016.04 面向海量地理信息数据存储和并行空间分析的高性能GIS系统研制,负责系统设计(第二参与人)经费600万
- 企事业委托项目,2023.08-2.23.12,“遥感大数据综合分析与可视化平台开发” ,课题经费100万元
- 王少华. 基于地理学认知的遥感智能计算. 中国科学院空天信息创新研究院遥感与数字地球重点实验室2023年年会报告. 2024-01-05
- Shaohua Wang. Learn to Solve the Spatial Optimization Decision with Deep Reinforcement Learning in SDGs. The 1st Youth Innovation Forum on Digital Earth. 2023-08-23—2023-08-24.
- 王少华.耦合大数据和人工智能的遥感智能计算进展. 第22届中国遥感大会国土资源遥感论坛. 2023-08-22.
- 王少华. 耦合时空大数据和人工智能的空间优化研究进展. ACM中国图灵大会(ACM TURC 2023)时空智能专题研讨会. 2023-07-30.
- 王少华. 耦合大数据和人工智能的高智能空间计算研究进展. 第三届空间信息技术应用大会社会遥感地理计算分论坛. 2023-07-14.
- Haojian Liang; Shaohua Wang*. A New Approach Based on Graph Neural Network for Solving p-center Problems, The 1st International Workshop on Methods, Models, and Resources for Geospatial Knowledge Graphs and GeoAI, Poznań, 2021-09-27—2021-09-30.
- Shaohua Wang. The New Generation Geoinformation System & Science, 2021年美国地理学家协会年会, 美国西雅图, 2021-04-07至2021-04-11.
- Shaohua Wang; Ershun Zhong; Hao Lu; Weiying Yun; Wenwen Cai. A Big Spatiotemporal Analytics Engine for Air Traffic Movement data, Analysis of Movement Data (AMD’18) workshop, GIScience, Melbourne, Australia, 2018-8-28—2018-8-30.
- Shaohua Wang. Spatiotemporal Study: Big Geospatial Data Challenges and Best Practices, 2018年美国地理学家协会年会, 美国新奥尔良, 2018-4-10至2018-4-14.
- Shaohua Wang. Comparative analysis for p-median problems, Leadership Workshop on Location Analytics in Business, University of California Santa Barbara, 2018-1-31—2018-2-2.